Odorant-induced activation of extracellular signal-regulated kinase/mitogen-activated protein kinase in the olfactory bulb promotes survival of newly formed granule cells.
نویسندگان
چکیده
Extracellular signal-regulated kinase 1/2 (Erk1/2)/mitogen-activated protein (MAP) kinase (MAPK) plays a significant role in neuronal survival, including odorant-induced, activity-dependent survival of olfactory sensory neurons in the main olfactory epithelium. Here, we examined the role of MAPK for the survival of neurons in the olfactory bulb. To study odorant-induced activation of MAPK in the olfactory bulb, mice were exposed to odorants in vivo, and MAPK was assayed. Exposure of mice to some odorants in vivo activated MAPK in granule cells 10 min after exposure. Activation of MAPK was particularly evident in the nucleus and dendrites of granule cells. Because MAPK activation can augment neuronal survival, odorant enhancement of granule cell survival was monitored by bromodeoxyuridine (BrdU) incorporation. Long-term exposure to odorants increased the survival of newly formed granule cells as well as the number of granule cells that were both BrdU+ and phospho-Erk+. Inhibition of MAPK by administration of SL327 in vivo blocked the odorant-induced increase in newly formed granule cells, suggesting that activation of MAPK promotes the survival of granule cells in the olfactory bulb. Studies using cultured granule cells confirmed that activation of MAPK in granule cells protects them against strong apoptotic signals. These data suggest that stimulation of MAPK in olfactory bulb granule cells by some odorants may contribute to the survival of newly formed granule cells caused by odorant exposure.
منابع مشابه
Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells
Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes. This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...
متن کاملAnti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells
Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes. This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...
متن کاملModulation of H2O2- Induced Neurite Outgrowth Impairment and Apoptosis in PC12 Cells by a 1,2,4-Triazine Derivative
Introduction: Increased oxidative stress is widely accepted to be a factor in the development and progression of Alzheimer’s disease. Triazine derivatives possess a wide range of pharmacological activities including anti-oxidative and anti-in.ammatory actions. In this study, we aimed to investigate the possible protective effect of 3-thioethyl-5,6-dimethoxyphenyl-1,2,4-triazine (TEDMT) on H2O2-...
متن کاملS100A9 aggravates bleomycin-induced dermal fibrosis in mice via activation of ERK1/2 MAPK and NF-κB pathways
Objective(s): This study aims to investigate the pathogenicity and possible mechanisms of S100A9 function in mice models of scleroderma. Materials and Methods: The content of S100A9 in the skin tissues of mice with scleroderma was determined. Different concentrations of bleomycin (BLM) and S100A9 were subcutaneously injected into the backs of mice simultaneously, and then pathological changes i...
متن کاملPotential protective roles of phytochemicals on glutamate-induced neurotoxicity: A review
Glutamate, as an essential neurotransmitter, has been thought to have different roles in the central nervous system (CNS), including nerve regeneration, synaptogenesis, and neurogenesis. Excessive glutamate causes an up-regulation of the multiple signaling pathways, including phosphoinositide-3 kinase/protein kinase B (PI3K/Akt), Akt/mammalian target of rapamycin (mTOR) protein, mitogen-activat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 22 شماره
صفحات -
تاریخ انتشار 2005